Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(4): 1142-1151, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38568420

ABSTRACT

The metabolic engineering of microbes has broad applications, including biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multistep pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is the division of labor (DOL) in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted interstrain population dynamics. Through modeling, we show that dynamic division of labor (DDOL), which we define as the DOL between indiscrete populations capable of dynamic and reversible interchange, can overcome these limitations and enable the robust maintenance of burdensome, multistep pathways. We propose that DDOL can be mediated by horizontal gene transfer (HGT) and use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.


Subject(s)
Microbial Consortia , Microbiota , Gene Transfer, Horizontal , Metabolic Engineering , Genomics
2.
Proc Natl Acad Sci U S A ; 121(7): e2309261121, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38324568

ABSTRACT

The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor-positive, human epidermal growth factor 2 receptor-negative (ER+/HER2-) breast tumor cells. Despite the drug's success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib-a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle "paths" that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes.


Subject(s)
Breast Neoplasms , Piperazines , Pyridines , Humans , Female , Cell Cycle , Cell Division , Piperazines/pharmacology , Piperazines/therapeutic use , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Protein Kinase Inhibitors/pharmacology
3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873187

ABSTRACT

The metabolic engineering of microbes has broad applications, including in biomanufacturing, bioprocessing, and environmental remediation. The introduction of a complex, multi-step pathway often imposes a substantial metabolic burden on the host cell, restraining the accumulation of productive biomass and limiting pathway efficiency. One strategy to alleviate metabolic burden is division of labor (DOL), in which different subpopulations carry out different parts of the pathway and work together to convert a substrate into a final product. However, the maintenance of different engineered subpopulations is challenging due to competition and convoluted inter-strain population dynamics. Through modeling, we show that dynamic division of labor (DDOL) mediated by horizontal gene transfer (HGT) can overcome these limitations and enable the robust maintenance of burdensome, multi-step pathways. We also use plasmid genomics to uncover evidence that DDOL is a strategy utilized by natural microbial communities. Our work suggests that bioengineers can harness HGT to stabilize synthetic metabolic pathways in microbial communities, enabling the development of robust engineered systems for deployment in a variety of contexts.

SELECTION OF CITATIONS
SEARCH DETAIL
...